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Abstract

A bead and spring model is considered for the Brownian dynamics simulation of the behavior of regular star polymer chains in a dilute

solution under both shear flow and extensional (or elongational) flow. Finite extensibility, excluded volume, and hydrodynamic interaction

are taken into account to make the polymer model as realistic as possible. The behavior of star-like chains in flow is similar to that of linear

and ring polymers. Thus, dependence of a given property with the arm molecular weight is analogous to that found for linear polymers when

using the total molecular weight. In shear flow, the deformation of the chain and the shear rate viscosity dependence (the flow curve), are

studied. We find a slope for the shear-thinning region of the flow curve close to K2/3. In elongational flow the coil-stretch transition is

characterized by giving the relationship between the critical elongational rate and the arm molecular weight, which turns out to be similar to

the power law found in linear chains.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamics of flexible polymer chains in flowing solution

is a topic widely studied by using computer simulation

techniques, which allow to handle more sophisticated

polymer models than those employed in analytical

approaches. Most efforts have been devoted to solve

conformational and dynamical problems of linear polymer

under both shear and extensional flows.

In shear it is well known that polymer chains are oriented

and deformed, which influences the solution flow properties,

thus appearing the characteristic non-Newtonian behavior.

Under extensional flows, flexible polymer chains experience

the so-called coil-stretch transition [1,2], consisting of the

abrupt, sudden, increase in polymer property values when

the extensional rate exceeds a certain critical value.

Previous papers of our group [3,4] are devoted to the

study of such systems, and show the importance of the

inclusion of effects such a excluded volume (EV) and
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hydrodynamic interaction (HI) in order to get results

comparable to experiments.

In spite of the huge amount of work on flowing polymer

solutions, less attention has been paid to polymers with non-

linear topology, mainly to their behavior in extensional flows.

In a previous paper [5], we simulated and analyzed the

behavior of cyclic (ring) polymers under flow. Now, the

present work extends the conclusions of the preceding one to

another common topology, namely regular (uniform) star

polymers. These are polymers with a single polyfunctional

branching point, the central core, fromwhich linear chains, so-

called arms, of the same chemical structure and length stick

out. They are, therefore, the simplest representatives of a wide

class of branched polymers. Equilibrium and dynamics

properties of star polymers have been characterized experi-

mentally [6] and studied theoretically or with the help of

computer simulations [7–10]. Very recent contributions to the

study of conformational and hydrodynamic properties of star

polymers are Refs. [11–13]. In this paper, we will not discuss

equilibrium properties of star polymers but show their

behavior under two typical flow situations: simple shear and

steady uniaxial elongational flow. For this purpose we make

use of the Brownian dynamics simulation technique (BD)

including fluctuating hydrodynamic interaction.
Polymer 46 (2005) 6756–6766
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2. Model and methodology

We consider a dilute solution of star polymers subjected

to simple shear and uniaxial elongational flows. The

velocity field of the shear flow is given by

vx Z _gy; vy Z 0; vz Z 0 (1)

whereas the elongational velocity field is given by

vx Z _3x; vy ZK
1

2
_3y; vz ZK

1

2
_3z (2)

where _g and _3 are the shear and the elongational rate,

respectively.

In shear flow it is convenient to use a dimensionless form

of the shear rate related to the molecular weight of the

polymer chain [14]

bZ
Mhs½h�0

NAkBT
_g (3)

whereM is the molecular weight, hs is the solvent viscosity,

[h]0 the zero-shear intrinsic viscosity, NA the Avogadro

number, kB the Boltzmann constant and T the absolute

temperature.

The polymer molecule is modeled as a bead-and-spring

chain [14] with N beads connected by NK1 FENE (finite

extensible non-linear elongational) springs which follow the

force law [14]

FðsÞ Z
H

1K ðQ=QmaxÞ
2
Q (4)

where Q is the spring vector, Qmax the maximum spring

length and HZ3kBT/b
2 the spring constant, being b2 the

equilibrium mean squared length of a Hookean spring. If we

define the chain length in terms of NK Kuhn steps of length

bK, then b2ZNKb
2
K. Regular stars are formed by a central

bead and F arms, the so-called functionality, of equal

number of beads NarmZ(NK1)/F.

Intramolecular, excluded volume interactions to mimic

solvent quality are simulated by introducing interaction

forces between non-bonded beads. An adequate choice is

the Lennard–Jones (LJ) potential

V Z 43LJ
sLJ

rij

� �12

K
sLJ

rij

� �6� �
(5)

where rij is the distance between beads i and j and 3LJ and

sLJ are the Lennard–Jones parameters: Minimum energy

and zero energy distance, respectively. As shown by Freire

and co-workers, appropriate LJ parameter values that

reproduce correctly the power laws relating polymer

properties to molecular weight are 3LJZ0.1kBT for good

solvents [15] and 3LJZ0.3kBT for theta solvents [16], with

sLJZ0.8b in any case. In this work we show mainly results

obtained for polymers under good solvent conditions. In

addition, some results corresponding to chains under theta

conditions are also displayed to show their similar flow
behavior with the good solvent case. Finally, simulations

with chains in the absence of intramolecular potential

between non-bonded beads, so-called ‘phantom’ chains and

termed along the paper as ideal chains, were also carried out

and results compared to those under good solvent

conditions. A characteristic of ideal chains is the occurrence

of unrealistic crossing of chain elements during the chain

dynamics.

The dynamics of the polymer chain is monitored from

trajectories of individual molecules obtained by BD

simulation. We employ a predictor–corrector version of

the Ermak and McCammon algorithm [17] proposed by

Iniesta and Garcı́a de la Torre [18]. Simulations with and

without HI were performed. Fluctuating hydrodynamic

interactions between beads are accounted for by means of

the Rotne–Prague–Yamakawa tensor [19,20], as it has been

done in most Brownian dynamics simulations of dilute

polymer solutions [21]. This tensor includes terms of the

ordersK1 andK3 in the interbead distances, which usually

suffices for the relatively open conformations of random

coils. An exception could be, in our case, the star core

having high density of segments for which improved

representations of HI would be more accurate [22,23]. As

this dense region has a low mobility, we expect that the

effect of the more intense HI at the core will have a minor

influence in the results for the overall properties. For the

bead friction we use a Stokes coefficient zZ6phss, where
sZ0.257b, which correspond to a dimensionless HI

parameter h*Z0.25. In this way, five independent polymer

trajectories are generated. Steady-state properties are

computed by averaging over each trajectory, after discount-

ing the initial part for equilibration purposes. Then, the

mean and standard deviation over the five trajectories are

taken to characterize the actual property values.

Along the work, quantities are given in the following unit

system: b, kBT and zb2/kBT, which are the units for length,

energy and time, respectively. For simplicity, we will not

use any special notation to indicate dimensionless quantity.

In the unit system employed, the spring constant becomes

HZ3 and the maximum spring length QmaxZ10. The

simulation time step was DtZ10K4, as required when the

Lennard–Jones potential is present in the computation.
3. Results
3.1. Shear flow

We study the influence of the shear rate b on the star

dimensions in terms of the parameters d2, dxx and dyy which

give, respectively, the relative increase in the mean-square

radius of gyration

d
2 Z

hs2i

hs2i0
K1 (6)
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and the relative increase in the components of the radius of

gyration along the flow direction

dxx Z
hGxxi

ð1=3Þhs2i0
K1 (7)

and along the gradient direction

dyy Z
hGyyi

ð1=3Þhs2i0
K1 (8)

The gyration tensor is defined as

GZ ½1=ð2N2Þ�
PN

iZ1

PN
jZ1hri;jri;ji, where ri,j is the vector

between beads i and j. We also study the influence of the

shear rate on the intrinsic viscosity

½h�ZK
NA

hsnM

ðtxyÞp

_g
(9)

where n is the number concentration of polymer and (txy)p
the polymer contribution to the shear stress. For a bead-and-

spring macromolecular model with N beads, the polymer

contribution to the stress tensor is calculated using the

modified Kramers expression [14] which, neglecting the

isotropic part, reads

tp Z n
XN
iZ1

hRiFii (10)

where Ri is the position vector of bead i respect to the center

of mass of the chain and Fi is the net force exerted on bead i

by springs and excluded volume interactions. The brackets

h i mean conformational average.

Fig. 1(A) shows the evolution of d2 with b for various star

molecular weights, N, in good solvent conditions (3LJZ0.1)

and with HI, but keeping fix the number of arms, FZ4 and,

therefore, varying Narm. For the sake of clarity vertical error

bars are displayed in figures when they are bigger than the

symbol size used. The aspect of those plots are similar to

that for linear and ring chains with both FENE and Hookean

springs [3,5]. Thus, at low and moderate shear rate, d2

follows a straight line in a log–log plot. Besides, values of d2

for different N tend to superimpose, since b makes results

molecular weight independent at low and intermediate shear

rates. At high shear rate, however, a downward curvature

appears when FENE chains are employed (black symbols)

as a consequence of the finite extensibility of the chain, and

d2 values start to slightly differ, increasing with the number

of beads, N. At extremely high shear, chains are completely

unraveled and stretched and values of d2 will tend to a

constant value consistent with the full elongation of the

chains. Clearly, when Hookean chains are used (empty

symbols), deformation can increase infinitely so that the

linearity of the plot is extended to large b values. Thus, a

good estimate of the slope can be obtained by using

Hookean springs because this model presents the same

asymptote than that predicted with FENE springs at low

values of b. The dependence in the linear part of the curve,

can be expressed by a power law,
d2 ZCba (11)

For the case of Gaussian chains with HI presented in

Fig. 1(A), we obtain an exponent aZ2.14G0.04. Thus, the

power law found for linear chains, d2ZCb2 [3], holds also

in the case of star chains. For FENE chains, we find an

exponent slightly lower (about 1.8), although the downward

curvature at high shear due to the finite extensibility makes

difficult to evaluate precisely the slope of the linear region.

The b dependence of d2 at the intermediate shear rate, where

HI and EV start to gradually vanish, is a reflection of the

complex interplay of both effects. Their influence on the

exponent of Eq. (11) has been evaluated for linear chains in

Refs. [24–26] and for ring polymers in our previous paper

[5]. Fig. 1(B) and (C) represents the deformations along the

flow (dxx) and gradient (dyy) direction, respectively, the latter

being a semilog plot. As appreciated, the chain stretches

along the flow direction much more than it compresses in

the perpendicular direction. Thus, the value of dyy decreases

slightly with the flow, whereas dxx increases several orders

of magnitude. Again (Fig. 1(B)), it can be appreciated that at

high shear, in the non-linear region, the star with higher N

presents a higher value of the deformation along the flow

direction. The value of the slope of the linear region is about

1.8 as that found for d2. Clearly, the overall deformation, d2,

coincides with the x-component under large shear.

In Fig. 2 we set NZ25 and vary the number of arms, F.

As appreciated the different plots do not superimpose and

the intercept, related to the constant C in Eq. (11), is clearly

different. Obviously, in increasing F keeping N, the number

of beads per arm, Narm (equivalently the number of beads of

the larger linear piece of the chain, 2NarmC1) decreases and

so does the ‘deformability’ of the polymer. Furthermore, the

bead density in the star core is higher and the star becomes

closer to a rigid sphere. It means that deformation, a relation

between equilibrium and non-equilibrium size, is smaller

for identical dimensionless shear rate, b. Thus, the upper

limiting value of d2 corresponds to that of the linear chain

(FZ2), as appreciated in the mentioned figure. However,

the slope of the linear part of the curve, i.e. the exponent of

the Eq. (11), is practically independent of the functionality.

At very large b, the fully elongated arms cluster in opposite

directions respect to the central bead giving rise to a rod-like

conformation along the flow and, therefore, the F

dependence becomes weak.

Finally for the sake of completeness, we compare in

Fig. 3 the shear evolution of the deformation for stars with

identical Narm, therefore, different N and F but identical

larger linear piece. We also include the corresponding linear

polymer (FZ2) with NZ2NarmC1. We will see later the

relevance of the arm molecular weight to characterize the

star behavior, mainly under elongational flow. Ideal chains

are used here because we dispose of much more results for

this kind of chains. Curves clearly do not superimpose in the

linear region. As before, geometries closer to a rigid sphere,

i.e. higher value of F, are observed to present smaller values



Fig. 1. (A) Dependence of the star deformation, d2, on the shear rate, b, for several N and fixed FZ4. (B) Dependence of dxx of stars with FZ4 on b. (C)

Semilog plot of the dependence of dyy of stars with FZ4 on b. All simulations include HI and LJ potential (good solvent).
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of d2. The slope of the linear part is again approximately 2.

All curves tend to superimpose in the final non-linear

region, where chains are in their fully elongated rod-like

conformations. Clearly, because Narm is the same, the
Fig. 2. Dependence of the star deformation, d2, on the shear rate, b, for

several F and fixed NZ25. All simulations include HI and LJ potential

(good solvent).
maximum deformation of these FENE chains is practically

identical.

Fig. 4(A) shows the shear rate evolution of the intrinsic

viscosity (relative to its zero-shear value) of star polymers
Fig. 3. Dependence of the star deformation, d2, on the shear rate, b, for fixed

NarmZ6. All simulations with HI and without LJ potential (no-EV, ideal

chains).



Fig. 4. Relative intrinsic viscosity, [h]/[h]0, vs. b of stars: (A) several N, fixed FZ4, HI and LJ potential (good solvent); (B) several F, fix ed NZ25, HI and LJ potential (good and theta); (C) several F, NZ25 and

49, HI, ideal (no-EV). Extra points of NZ25 theta; (D) Fixed NarmZ6, HI and no-EV.
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of several N, fixed FZ4, with HI and in good solvent

conditions. As expected, b makes [h]/[h]0 values N

independent as long as the shear rate is not very high. The

viscosity curve presents three different regions. Region I is

the Newtonian plateau, characteristic at low shear rate

(b(1 in our plots). Region III is the shear-thinning region,

characteristic of most macromolecular fluids, where

viscosity decreases strongly with shear rate. This non-

linearity arises because molecules are highly oriented along

the flow direction and close to fully stretched, therefore,

being a direct consequence of the finite extensibility. As

observed, points corresponding to different N clearly do not

superimpose, the discrepancy in the value of [h]/[h]0 being

more noticeable in diminishing N (equivalently Narm). By

using the three last points of the curves in the shear-thinning

region we calculate a slope of K0.73G0.04 for NZ13 and

K0.663G0.04 for NZ49. Thus, [h]/[h]0 is a bit lower as N

is smaller (for a given b). However, it must be noticed that

the zero-shear intrinsic viscosity, [h]0, used to compute b,

depends on the HI and EV effects included in our

simulations, which disappear at very high shear and,

therefore, in that region we are not employing the most

appropriate value of b to get N-independent behavior. In any

case, the slope of the shear-thinning appearing in the log–

log plots obtained from our simulations, although slightly

varying with N, are close to the value K2/3 found

theoretically in Ref. [27]. A slope smaller (in absolute

value) than K1, the upper limit of the FENE spring model,

is also in good agreement with experiments. However,

experiments usually do not reach so large shear rates, since

flow instabilities start to appear. Finally, an interesting part

is region II, which could be termed as ‘pseudo-plateau’.

There, the viscosity presents an ondulation. Thus, it

diminishes slightly with b, and then increases a bit,

appearing a shear-thickening behavior, before the clear

shear-thinning region. This kind of behavior is due to the

influence of EV and HI at the intermediate shear rate region

as predicted theoretically [27] and found in previous

simulations of our group using other topologies [5,28].

Fig. 4(B) corresponds to the same kind of representation

as Fig. 4(A) but keeping NZ25 and varying F in order to

show the influence of the functionality. The three above-

mentioned regions are again appreciated. Since N is kept

fixed, different curves apparently superimpose quite well,

mainly at low b. In the strong shear-thinning region points

tend to diverge, [h]/[h]0 (for a given b) becoming slightly

higher in increasing F. This can be expected, since at

smaller F (and large Narm) chains present less spherical

(more rod-like) symmetry and they are better oriented along

the flow resulting in an easier shear viscosity decrease

relative to its zero-shear value. Slopes are again aboutK0.7,

decreasing slightly (in absolute value) with increasing F.

Some points corresponding to the simulation of a star with

FZ4 under theta conditions (3LJZ0.3) were included. As

observed, points superimpose well (recall that viscosities

are normalized to the zero-shear value) showing a flow
behavior similar to that of good solvent condition (3LJZ
0.1).

In Fig. 4(C) we switch the LJ potential off (except in one

case) by using ideal chains and keep the HI effect. Thus, the

influence of HI in the intermediate shear rate region is better

appreciated. Now, intrinsic viscosity behaves Newtonian at

low shear, without the ondulation appreciated in Fig. 4(B),

due to the absence of EV (see Ref. [28] for a deeper

discussion on the effects of EV and HI). However, prior to

the sharp shear thinning a shear-thickening region appears

as a consequence of the stretching of the arms and the

subsequent weakening in HI, as predicted theoretically [27].

Chains without HI are less protected against the flow,

presenting a higher friction and thus a higher viscosity. This

shear thickening is stronger as Narm is larger and the

unraveling of the chain produces a more dramatic effect on

the HI decrease (i.e. chain becomes more free-draining, thus

increasing the viscosity). Furthermore, higher F and shorter

arms implies a more dense core, and HI effect does not

disappear easily. In Fig. 4(C) points corresponding to a

larger linear chain with NZ49 were added to better show

the importance of the arm molecular weight on the value of

the maximum. Thus, shear thickening is slightly stronger for

chains with FZ2, whereas chains with short arms do not

present that maximum. Again, all points superimpose quite

well up to the shear-thickening region. Besides, points

corresponding to the case NZ25 and FZ4 under theta

solvent condition (empty up-triangles crossed by dashed

line) were added to show that the flow behavior of ideal and

theta chain models are not equivalent. The inclusion of

intramolecular LJ potential, regardless good or theta

conditions produces the same effect of diminishing the

intrinsic viscosity with shear and, therefore, tends to

suppress the shear thickening. Finally, in the shear thinning

region slopes are again, as in Fig. 4(B), slightly different and

about K0.7. The functionality independence of [h]/[h]0 at

low b implies that, at least in that region, the ratio of the

intrinsic viscosity of a star, [h]s, to that of the corresponding

(same N) linear polymer, [h]l, has the same value as the ratio

of their zero-shear intrinsic viscosities measured at the same

b: [h]s/[h]lZ[h]0,s/[h]0,l.

Finally, in Fig. 4(D) we compare the viscosity behavior

of stars with the same arm molecular weight, i.e. the same

larger linear piece of chain, 2NarmC1Z13. We present

results for chains without intramolecular excluded volume

potential. As appreciated, in the Newtonian plateau region

all data of the relative intrinsic viscosity superimpose quite

well. In the case shown, shear thickening is hardly

appreciated because chains are too short and the decrease

of the HI effect is not relevant (notice that this case

corresponds to the case FZ4 in Fig. 4(C)). In the shear-

thinning region results for each case now clearly diverge

and the onset of the decay appears at smaller b in decreasing

F and N. Since Narm is constant, [h]/[h]0 must be higher as

the star approaches the rigid sphere limit, i.e. in increasing



Fig. 5. Elongational rate dependence of (A) the mean squared radius of

gyration, hs2i and (B) the elongational intrinsic viscosity (normalized to its

equilibrium value), for stars with NZ25, varying F and with HI and LJ

potential (good solvent).
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F, and arms cluster less easily to form a rod-like

conformation.

Although this paper is focused on the flow behavior of

regular stars, it is worth mentioning that the numerical

results obtained in the absence of flow, hs2i0 and [h]0
(employed here to get the relative quantities d2 and [h]/[h]0),

agree qualitatively well with experimental results reported

in Ref. [6] for the zero-shear molar mass dependence of

those star quantities. In both cases there exist power

relationships of the radius of gyration and the intrinsic

viscosity with the molecular weight, N. Furthermore, as the

molecule presents a higher spherical symmetry (same

molecular weight but higher functionality) both the intrinsic

viscosity and the radius of gyration decrease their values,

resulting log–log plots for hs2i0 and [h]0 parallel to those of

their linear counterparts [6]. Clearly, in diminishing the arm

dimensions and increasing the spherical symmetry the zero-

shear intrinsic viscosity will be smaller. A different situation

occurs under strong shear flow. In such a case, as explained

previously (Fig. 4(B)), molecules that are able to rearrange

their overall shapes and align easily with the flow (i.e. stars

with small F) will undergo a higher decrease of the intrinsic

viscosity respect to their zero-shear value, in spite of their

higher deformation (Fig. 1(A)).

3.2. Extensional flow

When flexible polymers are subjected to an elongational

rate of strain greater than a certain threshold value they

experience an abrupt increase in their conformation

dependent properties due to the sudden unraveling of the

random coil [2,4]. In this paper we are concerned with the

dependence of the average steady-state properties of star-

like chains on the elongational rate. This kind of study

allows for the determination of the critical elongational

strain rate value, _3c.
In Fig. 5(A) results for the steady-sate values of the mean

square radius of gyration, hs2i, as a function of _3 are plotted.
There, the coil-stretch phenomenon for regular star chains

of 25 beads with HI in good solvent conditions and with

different number of arms, F, is clearly illustrated. The coil-

stretch transition is seen as a large, sudden increase in hs2i at

a certain value of the elongational rate _3c marked in plots of

Fig. 5(A) with dotted lines. Thus, at _3! _3c chains stay near

their equilibrium coil conformations. As appreciated, curves

shift to the right, i.e. greater _3c, as the functionality, F,

increases. This is because higher F implies smaller Narm and

the critical elongational rate of stars depends mainly on the

molecular weight of their largest linear piece, analogously

to linear polymers for which _3c decreases with chain

molecular weight. In the low flow rate region of Fig. 5(A)

ð_3/ _3cÞ it is also observed that stars with more arms,

therefore, shorter arms, present a smaller hs2i, as expected.

In addition, it seems (see region around _3c) that the coil-

stretch transition is sharper as Narm increases and the star is

closer to the linear topology. Finally, as explained in the
previous section, at very high flow rates the curve tends to

reach a plateau when FENE springs reach their maximum

elongation. In Fig. 5(B) the ratio of the elongational intrinsic

viscosity, ½ �h�, to its equilibrium value 3[h]0, [h]0 being the

zero-shear intrinsic viscosity (Trouton relation), is rep-

resented versus the elongational rate of strain. The

elongational intrinsic viscosity is defined as

½ �h�ZK
NA

hsnM

txx Ktyy

_3
(12)

where txx and tyy are the normal components of the stress

tensor, parallel and perpendicular to the flow, respectively.

The polymer contribution to the components of the stress

tensor is computed according to Eq. (10). As observed, at

low _3 the elongational viscosity is independent of the flow

rate, as it corresponds to the Newtonian regime. However, at

_3R _3c the viscosity increases abruptly, analogously to the

radius of gyration, giving the characteristic elongational–

thickening behavior of polymer solutions.

Fig. 6 shows the same kind of dependence that Fig. 5(A)

but now for chains with identical functionality, FZ6, and

different molecular weight, N. These chains again present



Fig. 7. Elongational rate dependence of hs2i for stars with fixed NarmZ6, HI

and both LJ potential (good and theta) and no-EV (ideal).
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different arm molecular weight and, therefore, different _3c,
which shifts to higher values as Narm diminishes. In this plot,

it is clearly appreciated how chains with higher N and,

therefore, higher Narm present higher hs2i equilibrium value.

Points corresponding to the case NZ25 in theta conditions

were also plotted (empty circles). As observed, they

superimpose well with the corresponding points for good

conditions mainly from _3c on since chains are stretched and

intramolecular LJ potential is not relevant. At _3! _3c values
of hs2i at theta conditions are obviously somewhat smaller

than those in good solvent although the log scale makes it

difficult to appreciate. Fig. 7 shows the flow dependence of

hs2i for several chains with the same NarmZ6, including the

case of linear chain (FZ2 and NZ13). As it is clearly

appreciated all the plots superimpose well about the same

value of _3c, as indicated by the dashed line. That plot

corroborates the above mention finding, e.g. the critical

elongational rate depends on the arm molecular weight.

Furthermore, the value of _3c of a linear chain with N beads is

very similar to that of a star chain with the same longest

linear piece (i.e. with 2NarmC1ZN). At _3! _3c, i.e. at and
near equilibrium, dimensions of the chain increase with F,

i.e. as the overall shape of the star is more spherical (recall

that Narm is constant). Some points obtained from

simulations both under theta and ideal (no-LJ) conditions

(empty symbols) are also shown. Clearly, dimension of

ideal chains at low elongational rate diminishes respect to its

value for the analogous chains with intramolecular LJ

potential, nevertheless the value of _3c is not significantly

influenced.

As observed in Figs. 5(A) and (B), 6 and 7, the value of

the critical elongational rate is strongly dependent on the

arm molecular weight, Narm, but not on the total molecular

weight or the functionality separately. Besides, _3c depends
on the presence or absence of HI, as discussed in our

previous paper [4], where the power law relating the critical

rate to the polymer molecular weight for linear chains was

determined. It is then the purpose of the last part of this
Fig. 6. Elongational rate dependence of hs2i for stars with varying N, fixed

FZ6 and with HI and LJ potential (good and theta).
paper to study the corresponding scaling relationship arising

for star polymers.

The strong effect of the coil-stretch transition on polymer

properties makes the value of _3c easily computable. The

procedure followed to determine _3c of FENE ring polymers

in our previous paper [5] was employed again in this work.

In Ref. [5], we considered that the transition takes place as

soon as the radius of gyration reaches fifty times its

equilibrium value, s2transZ50s20. The transition is so sharp,

that several criteria can be used without influence on the

critical value obtained. Fig. 8 shows, in a log–log plot, the

scaling relationships between _3c and Narm for regular stars.

A given Narm value can be obtained with several

combinations of N and F, nevertheless all of them yield

about the same value of _3c. Both free-draining (no HI) and

non-free draining (HI) chains were considered. As

appreciated, the slope depends strongly upon the inclusion

of HI effect. Nevertheless the inclusion of intramolecular

Lennard–Jones potential to represent good or theta solvent

conditions or the absence of it (ideal chain) seems to be
Fig. 8. Dependence of the critical elongational rate, _3c, with the star arm

molecular weight, Narm. Cases with HI, no-HI, LJ potential (good and theta)

and no-EV (ideal) are considered.
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irrelevant, i.e. the power law exponent is invariant respect to

the solvent quality as found in other simulations and

experiments (see Refs. [2,29–31] and our previous works

with linear and ring topologies [4,5]). In the absence of HI,

the slope in the log–log plot is about K2, more exactly we

get the relationship _3cZ ð5:9G0:2ÞNðK1:91G0:02Þ
arm , in good

agreement with the well-known theoretical quadratic power

law governing free-draining linear chains. Forcing the

exponent to be K2, we get

_3c Z 6:9NK2
arm (13)

Notice that, if expressed in terms of the longest linear

sequence in the star chain, i.e. 2NarmC1x2Narm (for large

enough arms), the numerical factor in Eq. (13) becomes

w27.6, very close to the constant 3p2Z29.6 predicted

theoretically for linear chains [4].When HI is considered it

seems that the slope in the log–log plot takes values between

K1.5 and K1.6. Indeed, to be precise, our simulation

results with HI and EV (good solvent), can be adjusted to the

equation _3cZ ð5:1G0:2ÞNK1:617G0:019
arm , whereas our results

with HI and ideal chains can be fit to

_3cZ ð5:5G0:7ÞNK1:57G0:06
arm . Points obtained for chains in

theta conditions seem to superimpose well with those of

good solvent, as already found for linear and ring chains

[4,5]. Difference in exponent due to the inclusion or not of

LJ potential is small so that, within the error, the way of

representing the solvent quality can be considered to have

no influence on the scaling relationship. Discrepancies may

be because values of N, or more precisely values of Narm, are

not large enough to be in the long chain limit and the core

can have some influence. Noticeably, an exponent of K1.6

agrees well with the theoretical predictions of Rabin and co-

workers for linear chains in good solvent [32]. Furthermore,

in our previous works with both linear [4] and ring [5]

chains we found an exponent of K1.55G0.03 that could

also be well approximated toK1.6. If we force the exponent

of the power law of the HI and EV case to be K1.6, we get

_3c Z 5:0NK1:6
arm (14)

in which case, using the same argument as for no-HI, in

terms of 2Narm the numerical factor in Eq. (14) becomes

5.0!21.6x15.1. However, quite accurate experiments to

determine the critical strain rate of flexible linear polymers

in elongational flow [29] report an exponent value of K1.5.

If we force the exponent to be exactly K1.5 (as we did in

Refs. [4,5]), we get

_3c Z 4:1NK1:5
arm (15)

in which case, in terms of 2Narm the numerical factor in Eq.

(15) becomes 4.1!21.5x11.6, in good agreement with the

constant 11.7 found in Ref. [4] for linear chains (which were

forced to scale as NK1.5). In conclusion, scaling relation-

ships between the critical elongational rate and molecular

weight for regular star chains are analogous to those found
for linear and ring chains [4,5] just changing the total

molecular weight, N, by the arm molecular weight, Narm.

In a previous work [4] we combined the value of the

critical elongational rate, _3c, and the longest viscoelastic

relaxation time (related to birefringence and viscosity

relaxations), t1, of linear chains with the same N, to get

the dimensionless quantity, _3ct1Z0:50. That quantity, ratio

of a characteristic time of the molecule to a characteristic

time of the experiment (inverse of the strain rate) is the so-

called Deborah number, De. Analogously, we can combine

the value of _3c and t1 for regular stars with the same Narm.

Rey et al. [7] found t01Z0:26N1:5
arm for regular stars with HI

and without EV. The time t01, obtained from the correlation

function of the first Rouse mode, is the longest relaxation

time related to dielectric relaxation, which is related to the

longest viscoelastic relaxation time by t1Zt01=2 and,

therefore, t1Z0:13N1:5
arm. This leads after Eq. (15) (con-

sidering that EV is not relevant) to _3ct1z0:5. We made

simulations (not shown here) to get values of t1 from the

decay of birefringence and radius of gyration of stars with

HI and EV. Again, we obtain _3ct1z0:5, as it was the case

for linear chains. Therefore, in experiments of polymers in

elongational flow, the Deborah number must reach the

threshold value DeZ0.5 in order the coil-stretch transition

to occur. This seems to be a universal value in the sense that

it is independent of the topology of the chain. Furthermore,

our simulations using a non-trivial chain model with non-

linear geometry validate the well-known prediction based

on the Hookean dumbbell model about the existence of an

abrupt stretching of the polymer chain when DeZ0.5 [14].

Nevertheless, the singularity that appears in using the

Hookean dumbbell model and the subsequent infinite chain

dimensions predicted theoretically are unrealistic.
4. Spring lengths under flow

Finally, it is interesting to notice that simulations results

agree with the notion that tension accumulates at the central

springs [27]. Thus, the most elongated springs are connected

to the branch point, tension increasing from the free ends

towards the core. Fig. 9(A) and (B) show the average length

of each spring according to its position along the arm

(starting from the core) for chains with NZ25, HI, both

good and ideal conditions and with several functionalities, F

(thus in increasing F the number of springs per arm

diminishes). The mean length of star segments as a function

of their position from the core was computed averaging over

the trajectory and over the arms of the star provided we

checked that springs in a given position presented similar

mean length irrespective the arm.

At quiescent solution and at low flow intensity, i.e. when

the chain is near the random coil conformation (Fig. 9(A)),

it is observed that, under good solvent conditions, all central

springs of a given arm present a similar average length,

regardless its functionality and the type of flow employed,



Fig. 9. Dependence of spring lengths on position along the arm for stars

with NZ25 and several F, under both shear and elongational flow. Cases

with HI, LJ potential (good) and no-EV (ideal) are considered. (A) Low

flow intensity ðb%2; _3! _3cÞ. (B) High flow intensity ðbO200; _3O _3cÞ.

J.G.H. Cifre et al. / Polymer 46 (2005) 6756–6766 6765
whereas the spring attached to the core present a larger

length and the end spring a shorter one. Because chains are

at or near equilibrium, spring dimensionless lengths are

about 1. Dashed lines of Fig. 9(A) and their labels can help

to guide the eye and summarize the conclusions given here.

We also observe that F influences the spring length attached

to the core which is more elongated as F is higher since it is

connected to more springs, carrying a higher tension.

Clearly as the core density is higher, core springs stretch out

as required by excluded volume interactions. This is clearly

appreciated in the chain with FZ8 (black squares) which

has three springs per arm. The core (first) spring is quite

stretched, the length of the central (second) one super-

impose with that of the second spring of stars with FZ3 and

4 (recall we are discussing the good solvent case), and the

length of the end (third) spring is similar to that of the end

springs of chains with FZ3 (eighth spring, black circles)

and FZ4 (sixth spring, triangles). Furthermore, the length

of these free end springs is practically that of equilibrium: 1.

On other hand, all springs of an ideal chain (empty circles)

have about the same length regardless their position in the
arm and the type of flow, since beads can overlap and

tension can relax easily. Spring lengths of ideal chains are

exactly 1, smaller than under good solvent as chain is not

expanded due to excluded volume.

Fig. 9(B) shows the effect of both shear and elongational

flows on spring lengths of chains with NZ25, FZ4, HI and

good solvent conditions. Flow intensities were chosen high

enough so that chains are far from their equilibrium random

coil conformation: in shear flow b belongs to the shear-

thinning region and in elongational flow _3O _3c. In the case

of elongational flow, rate of strain was more than twice its

critical value so that all arms were clearly stretched and

aligned along the flow (if _3z _3c not all arms are similarly

stretched). As observed in Fig. 9(B), under such flow

intensities springs lengths can reach several times the

dimensionless equilibrium length 1. In any case, spring

length increases from the free ends towards the center in a

continuous way and the central arm springs are not

equivalent as it was the case close to equilibrium. Tension,

again, clearly decreases towards the ends of the arms. The

decrease of the spring tension as a function of its arm

position is similar under shear and elongational flow,

although under elongation that decrease seems slightly

steeper (compare empty and black triangles) toward the end

of the arm.
5. Summary

In this paper we have used the Brownian dynamics

simulation technique applied to the bead-and-spring chain

model to study the flow behavior of regular star polymers.

Both in simple shear and uniaxial extensional flow, star

polymers present a similar steady-state behavior to that of

linear and ring polymers. Under both kind of flow,

simulation results agree with the notion that tension builds

up from the free ends to the center of the chain.

Under shear flow, the deformation of the star, d2, scales

with the dimensionless shear rate, b, following the well-

established quadratic power law d2ZCb2 for Gaussian

chains. The inclusion of finite extensibility, excluded

volume and hydrodynamic interaction tends to diminish

slightly the exponent value, a kind of behavior also expected

for linear polymers [26]. On other hand, in a log–log plot,

the shear intrinsic viscosity is shown to present the classical

behavior of polymer solutions: A Newtonian plateau at low

shear rates and a power law decay at high shear rates, the so-

called shear-thinning region. When excluded volume is

present, the non-Newtonian regime starts with a soft decay

in the viscosity before reaching the steep true shear-thinning

region. When hydrodynamic interaction is included a soft

shear thickening appears before the shear-thinning region.

This behavior is predicted by theory [27] and simulation [5].

We find slopes in the shear-thinning region close to K2/3,

in good agreement to some theoretical predictions [27].

Under elongational flow, star polymers present the
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typical coil-stretch transition when the extensional rate

exceeds a critical value _3c, analogously to the behavior

presented by linear and ring chains. Indeed, there exists a

similar power law for each topology relating the critical

elongational rate with some characteristic molecular weight

of the chain. They differ in that _3c of linear and ring

polymers scales with the total molecular weight, N, whereas

for star polymers it scales with the arm molecular weight,

Narm. As found for linear and ring polymers, the power law

depends on the presence of HI, in which case we find an

exponent in betweenK1.5 andK1.6. Clearly, to get results

comparable with experiments, HI must be considered in the

simulations. Since the power laws relating t1 and _3c of stars
with Narm present the same absolute exponent value just

with opposite sign, the dimensionless quantity _3ct1 can be

easily computed, adopting a similar value to that found for

linear polymers _3ct1Z0:5. In fact, linear and star chains of

the same Narm have similar longest relaxation time and

similar critical elongational rate. Therefore, the product _3ct1
seems to be independent of the topology.

Some limitations to the conclusions reported here can

arise from the relatively small N values (no greater than 49)

employed in our simulations. Small N implies small Narm so

that core effects become more relevant than when star arms

are large. Thus, increase of core density makes HI and EV

effects keep their importance when star is deformed by the

flow. In addition, arms may not be fully in the large linear

chain limit. This, for instance, may be a reason for our

finding that the exponent of the power law giving the

molecular weight dependence of the elongational rate is not

exactly the same as that found for linear chains, increasing

slightly with the presence of excluded volume potential. On

other hand, as the number of arms increase the motion of the

segments in the star core becomes increasingly difficult. For

high F (usually greater than 6) arms stretch out even under

unperturbed conditions which affects overall equilibrium

properties if Narm is not large enough [6].
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